3 years ago

Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase

Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase
Donald Hilvert, Cathleen Zeymer, Reinhard Zschoche
De novo biocatalysts have been successfully generated by computational design and subsequent experimental optimization. Here, we examined the evolutionary history of the computationally designed (retro-)aldolase RA95. The modest activity of the starting enzyme was previously improved 105-fold over many rounds of mutagenesis and screening to afford a proficient biocatalyst for enantioselective cleavage and synthesis of β-hydroxyketones. Using a set of representative RA95 variants, we probed individual steps in the multistep reaction pathway to determine which processes limit steady-state turnover and how mutations that accumulated along the evolutionary trajectory influenced the kinetic mechanism. We found that the overall rate-limiting step for aldol cleavage shifted from C–C bond scission (or an earlier step in the pathway) for the computational design to product release for the evolved enzymes. Specifically, interconversion of Schiff base and enamine intermediates, formed covalently between acetone and the catalytic lysine residue, was found to be the slowest step for the most active variants. A complex hydrogen bond network of four active site residues, which was installed in the late stages of laboratory evolution, apparently enhances lysine reactivity and facilitates efficient proton shuffling. This catalytic tetrad accounts for the tremendous rate acceleration observed for all steps of the mechanism, most notably Schiff base formation and hydrolysis. Comparison of our results with kinetic and structural studies on natural aldolases provides valuable feedback for computational enzyme design and laboratory evolution approaches alike.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05796

DOI: 10.1021/jacs.7b05796

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.