5 years ago

Direct Imprinting of Scalable, High-Performance Woodpile Electrodes for Three-Dimensional Lithium-Ion Nanobatteries

Direct Imprinting of Scalable, High-Performance Woodpile Electrodes for Three-Dimensional Lithium-Ion Nanobatteries
Yue Gai, Kenneth R. Carter, Irene R. Howell, Wenhao Li, James J. Watkins, Aditi R. Naik, Yiliang Zhou, Shengkai Li
The trend of device downscaling drives a corresponding need for power source miniaturization. Though numerous microfabrication methods lead to successful creation of submillimeter-scale electrodes, scalable approaches that provide cost-effective nanoscale resolution for energy storage devices such as on-chip batteries remain elusive. Here, we report nanoimprint lithography (NIL) as a direct patterning technique to fabricate high-performance TiO2 nanoelectrode arrays for lithium-ion batteries (LIBs) over relatively large areas. The critical electrode dimension is below 200 nm, which enables the structure to possess favorable rate capability even under discharging current densities as high as 5000 mA g–1. In addition, by sequential imprinting, electrodes with three-dimensional (3D) woodpile architecture were readily made in a “stack-up” manner. The height of architecture can be easily controlled by the number of stacked layers while maintaining nearly constant surface-to-volume ratios. The result is a proportional increase of areal capacity with the number of layers. The structure-processing combination leads to efficient use of the material, and the resultant specific capacity (250.9 mAh g–1) is among the highest reported. This work provides a simple yet effective strategy to fabricate nanobatteries and can be potentially extended to other electroactive materials.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14649

DOI: 10.1021/acsami.7b14649

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.