5 years ago

Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM

Lithium Expulsion from the Solid-State Electrolyte Li6.4La3Zr1.4Ta0.6O12 by Controlled Electron Injection in a SEM
Xiangxin Guo, Dongli Hu, Cheng Chen, Juanjuan Xing, Hui Gu, Xiaowei Xie
The garnet ionic conductor is one of the promising candidate electrolytes for all-solid-state secondary lithium batteries, thanks to its high lithium ion conductivity and good thermal and chemical stability. However, its microstructure is difficult to approach because it is very sensitive to the inquisitive electron beam. In this study based on a scanning electron microscope (SEM), we found that the electron beam expulses the lithium out of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), and the expulsed zone expands to where a stationary beam could extend and penetrate. The expulsion of metallic lithium was confirmed by its oxidation reaction after nitrogen inflow into the SEM. This phenomenon may provide us an effective probe to peer into the conductive nature of this electrolyte. A frame-scan scheme is employed to measure the expulsion rate by controllable and more uniform incidence of electrons. Lithium accumulation processes are continuously recorded and classified into four modes by fitting its growth behaviors into a dynamic equation that is mainly related to the initial ion concentration and ion migration rate in the electrolyte. These results open a novel possibility of using the SEM probe to gain dynamic information on ion migration and lithium metal growth in solid materials.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b17276

DOI: 10.1021/acsami.7b17276

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.