5 years ago

Quasiharmonic Analysis of the Energy Landscapes of Dihydrofolate Reductase from Piezophiles and Mesophiles

Quasiharmonic Analysis of the Energy Landscapes of Dihydrofolate Reductase from Piezophiles and Mesophiles
Qi Huang, Toshiko Ichiye, Russell J. Hemley, Jocelyn M. Rodgers
A quasiharmonic analysis (QHA) method is used to compare the potential energy landscapes of dihydrofolate reductase (DHFR) from a piezophile (pressure-loving organism), Moritella profunda (Mp), and a mesophile, Escherichia coli (Ec). The QHA method considers atomic fluctuations of the protein as motions of an atom in a local effective potential created by neighboring atoms and quantitates it in terms of effective force constants, isothermal compressibilities, and thermal expansivities. The analysis indicates that the underlying potential energy surface of MpDHFR is inherently softer than that of EcDHFR. In addition, on picosecond time scales, the energy surfaces become more similar under the growth conditions of Mp and Ec. On these time scales, DHFR behaves as expected; namely, increasing temperature makes the effective energy minimum less steep because thermal fluctuations increase the available volume, whereas increasing pressure steepens it because compression reduces the available volume. Our longer simulations show that, on nanosecond time scales, increasing temperature has a similar effect as on picosecond time scales because thermal fluctuations increase the volume even more on a longer time scale. However, these simulations also indicate that, on nanosecond time scales, pressure makes the local potential less steep, contrary to picosecond time scales. Further examination of the QHA indicates the nanosecond pressure response may originate at picosecond time scales at the exterior of the protein, which suggests that protein–water interactions may be involved. The results may lead to understanding adaptations in enzymes made by piezophiles that enable them to function at higher pressures.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b11838

DOI: 10.1021/acs.jpcb.7b11838

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.