Damage to offshore production facilities by corrosive microbial biofilms
Abstract
In offshore production facilities, large amounts of deaerated seawater are continuously injected to maintain pressure in oil reservoirs and equivalent volumes of fluids, composed of an oil/gas, and water mixture are produced. This process, brewing billions of liters of biphasic fluids particularly rich in microorganisms, goes through complex steel pipeline networks that are particularly prone to biofilm formation. Consequently, offshore facilities are frequently victims of severe microbiologically influenced corrosion. Understanding of microbiologically influenced corrosion is constantly growing. In the laboratory, the inventory of potentially corrosive microorganisms is increasing and microbial biochemical and bioelectrical processes are now recognized to be involved in corrosion. However, understanding of corrosive multispecies biofilms and the complex metabolic processes associated with corrosion remains a considerable challenge as simple laboratory biofilms comprising pure or defined mixed cultures poorly represent the complexity of in situ biofilms. Complementary, antagonistic, and parallel microbial pathways occur within the complex microbial and inorganic matrix of the biofilms which can lead to high corrosion rates. This mini-review explores models of microbiologically influenced corrosion and places them in the context of the multispecies biofilms observed in situ. Consequences of mitigation strategies on biofilm corrosiveness and dispersal are also discussed.
Publisher URL: https://link.springer.com/article/10.1007/s00253-018-8808-9
DOI: 10.1007/s00253-018-8808-9
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.