5 years ago

ACID: Association Correction for Imbalanced Data in GWAS

Feng Bao, Qionghai Dai, , Yue Deng
Genome-wide association study (GWAS) has been widely witnessed as a powerful tool for revealing suspicious loci from various diseases. However, real world GWAS tasks always suffer from the data imbalance problem of sufficient control samples and limited case samples. This imbalance issue can cause serious biases to the result and thus leads to losses of significance for true causal markers. To tackle this problem, we proposed a computational framework to perform association correction for imbalanced data (ACID) that could potentially improve the performance of GWAS under the imbalance condition. ACID is inspired by the imbalance learning theory but is particularly modified to address the task of association discovery from sequential genomic data. Simulation studies demonstrate ACID can dramatically improve the power of traditional GWAS method on the dataset with severe imbalances. We further applied ACID to two imbalanced datasets (gastric cancer and bladder cancer) to conduct genome wide association analysis. Experimental results indicate that our method has better abilities in identifying suspicious loci than the regression approach and shows consistencies with existing discoveries.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.