Bitewing Radiography Semantic Segmentation Base on Conditional Generative Adversarial Nets.
Currently, Segmentation of bitewing radiograpy images is a very challenging task. The focus of the study is to segment it into caries, enamel, dentin, pulp, crowns, restoration and root canal treatments. The main method of semantic segmentation of bitewing radiograpy images at this stage is the U-shaped deep convolution neural network, but its accuracy is low. in order to improve the accuracy of semantic segmentation of bitewing radiograpy images, this paper proposes the use of Conditional Generative Adversarial network (cGAN) combined with U-shaped network structure (U-Net) approach to semantic segmentation of bitewing radiograpy images. The experimental results show that the accuracy of cGAN combined with U-Net is 69.7%, which is 13.3% higher than the accuracy of u-shaped deep convolution neural network of 56.4%.
Publisher URL: http://arxiv.org/abs/1802.02571
DOI: arXiv:1802.02571v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.