5 years ago

Lower Bounds for the Fair Resource Allocation Problem.

Zaid Allybokus, Lorenzo Maggi, Jérémie Leguay, Konstantin Avrachenkov

The $\alpha$-fair resource allocation problem has received remarkable attention and has been studied in numerous application fields. Several algorithms have been proposed in the context of $\alpha$-fair resource sharing to distributively compute its value. However, little work has been done on its structural properties. In this work, we present a lower bound for the optimal solution of the weighted $\alpha$-fair resource allocation problem and compare it with existing propositions in the literature. Our derivations rely on a localization property verified by optimization problems with separable objective that permit one to better exploit their local structures. We give a local version of the well-known midpoint domination axiom used to axiomatically build the Nash Bargaining Solution (or proportionally fair resource allocation problem). Moreover, we show how our lower bound can improve the performances of a distributed algorithm based on the Alternating Directions Method of Multipliers (ADMM). The evaluation of the algorithm shows that our lower bound can considerably reduce its convergence time up to two orders of magnitude compared to when the bound is not used at all or is simply looser.

Publisher URL: http://arxiv.org/abs/1802.02932

DOI: arXiv:1802.02932v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.