5 years ago

A dark energy scenario consistent with GW170817 in theories beyond Horndeski.

Shinji Tsujikawa, Ryotaro Kase

The Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories up to quartic order are the general scheme of scalar-tensor theories allowing the possibility for realizing the tensor propagation speed $c_t$ equivalent to 1 on the isotropic cosmological background. We propose a dark energy model in which the late-time cosmic acceleration occurs by a simple k-essence Lagrangian analogous to the ghost condensate with cubic and quartic Galileons in the framework of GLPV theories. We show that a wide variety of the variation of the dark energy equation of state $w_{\rm DE}$ including the entry to the region $w_{\rm DE}<-1$ can be realized without violating conditions for the absence of ghosts and Laplacian instabilities. The approach to the tracker equation of state $w_{\rm DE}=-2$ during the matter era, which is disfavored by observational data, can be avoided by the existence of a quadratic k-essence Lagrangian $X^2$. We study the evolution of nonrelativistic matter perturbations for the model $c_t^2=1$ and show that the two quantities $\mu$ and $\Sigma$, which are related to the Newtonian and weak lensing gravitational potentials respectively, are practically equivalent to each other, such that $\mu \simeq \Sigma>1$. For the case in which the deviation of $w_{\rm DE}$ from $-1$ is significant at a later cosmological epoch, the values of $\mu$ and $\Sigma$ tend to be larger at low redshifts. We also find that our dark energy model can be consistent with the bounds on the deviation parameter $\alpha_{\rm H}$ from Horndeski theories arising from the modification of gravitational law inside massive objects.

Publisher URL: http://arxiv.org/abs/1802.02728

DOI: arXiv:1802.02728v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.