4 years ago

An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range

Mike Partridge, David Robert Grimes, Daniel R. Warren
Charged particles such as protons and carbon ions are an increasingly important tool in radiotherapy. There are however unresolved physics issues impeding optimal implementation, including estimation of dose deposition in non-homogeneous tissue, an essential aspect of treatment optimization. Monte Carlo (MC) methods can be employed to estimate radiation profile, and whilst powerful, these are computationally expensive, limiting practicality. In this work, we start from fundamental physics in the form of the Bethe equation to yield a novel approximate analytical solution for particle range, energy and linear energy transfer (LET). The solution is given in terms of the exponential integral function with relativistic co-ordinate transform, allowing application at radiotherapeutic energy levels (50–350 MeV protons, 100–600 Mev/a.m.u carbon ions). Model results agreed closely for protons and carbon-ions (mean error within ≈1%) of literature values. Agreement was high along particle track, with some discrepancy manifesting at track-end. The model presented has applications within a charged particle radiotherapy optimization framework as a rapid method for dose and LET estimation, capable of accounting for heterogeneity in electron density and ionization potential.

Publisher URL: https://www.nature.com/articles/s41598-017-10554-0

DOI: 10.1038/s41598-017-10554-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.