Possible many-body localization in a long-lived finite-temperature ultracold quasi-neutral molecular plasma.
We argue that the quenched ultracold plasma presents an experimental platform for studying quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered non-equilibrium physics of this system.
Publisher URL: http://arxiv.org/abs/1708.07200
DOI: arXiv:1708.07200v5
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.