Uncertainty Quantification for Geometry Deformations of Superconducting Cavities using Eigenvalue Tracking.
The electromagnetic field distribution as well as the resonating frequency of various modes in superconducting cavities are sensitive to small geometry deformations. The occurring variations are motivated by measurements of an available set of resonators from which we propose to extract a small number of relevant and independent deformations by using a truncated Karhunen-Lo\`eve expansion. The random deformations are used in an expressive uncertainty quantification workflow to determine the sensitivity of the eigenmodes. For the propagation of uncertainty, a stochastic collocation method based on sparse grids is employed. It requires the repeated solution of Maxwell's eigenvalue problem at predefined collocation points, i.e., for cavities with perturbed geometry. To ensure consistency of the solution among the various eigenvalue problems and for numerical efficiency reasons, an eigenvalue tracking technique is proposed that is based on homotopies between collocation points and a Newton-based eigenvalue solver. The approach can be efficiently parallelized while tracking the eigenpairs. In this paper, we propose the application of isogeometric analysis since it allows for the exact description of the geometrical domains with respect to common computer-aided design kernels and for a straightforward and convenient way of handling geometrical variations.
Publisher URL: http://arxiv.org/abs/1802.02978
DOI: arXiv:1802.02978v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.