Fourier Analysis and Evaluation of DG, FD and Compact Difference Methods for Conservation Laws.
Large eddy simulation (LES) has been increasingly used to tackle vortex-dominated turbulent flows. In LES, the quality of the simulation results hinges upon the quality of the numerical discretizations in both space and time. It is in this context we perform a Fourier analysis of several popular methods in LES including the discontinuous Galerkin (DG), finite difference (FD), and compact difference (CD) methods. We begin by reviewing the semi-discrete versions of all methods under-consideration, followed by a fully-discrete analysis with explicit Runge-Kutta (RK) time integration schemes. In this regard, we are able to unravel the true dispersion/dissipation behavior of DG and Runge-Kutta DG (RKDG) schemes for the entire wavenumber range. The physical-mode is verified to be a good approximation for the asymptotic behavior of these DG schemes in the low wavenumber range. After that, we proceed to compare the DG, FD, and CD methods in dispersion and dissipation properties. Numerical tests are conducted using the linear advection equation to verify the analysis. In comparing different methods, it is found that the overall numerical dissipation strongly depends on the time step. Compact difference (CD) and central finite difference (FD) schemes, in some particular settings, can have more numerical dissipation than the DG scheme with an upwind flux. This claim is then verified through a numerical test using the Burgers' equation.
Publisher URL: http://arxiv.org/abs/1802.02719
DOI: arXiv:1802.02719v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.