Constraining Type Ia Supernova Progenitor Scenarios with Extremely Late-time Photometry of Supernova SN 2013aa.
We present Hubble Space Telescope observations and photometric measurements of the Type Ia supernova (SN Ia) SN 2013aa 1500 days after explosion. At this epoch, the luminosity is primarily dictated by the amounts of radioactive ${}^{57}\textrm{Co}$ and ${}^{55}\textrm{Fe}$, while at earlier epochs, the luminosity depends on the amount of radioactive ${}^{56}\textrm{Co}$. The ratio of odd-numbered to even-numbered isotopes depends significantly on the density of the progenitor white dwarf during the SN explosion, which, in turn, depends on the details of the progenitor system at the time of ignition. From a comprehensive analysis of the entire light curve of SN 2013aa, we measure a $M({}^{57}\textrm{Co})/M({}^{56}\textrm{Co})$ ratio of $0.02^{+0.01}_{-0.02}$, which indicates a relatively low central density for the progenitor white dwarf at the time of explosion, consistent with double-degenerate progenitor channels. We estimate $M({}^{56}\textrm{Ni}) = 0.732 \pm 0.151\:\mathrm{M_{\odot}}$, and place an upper limit on the abundance of ${}^{55}\textrm{Fe}$. A recent study reported a possible correlation between $M({}^{57}\textrm{Co})/M({}^{56}\textrm{Co})$ and stretch for four SNe Ia. SN 2013aa, however, does not fit this trend, indicating either SN 2013aa is an extreme outlier or the correlation does not hold up with a larger sample. The $M({}^{57}\textrm{Co})/M({}^{56}\textrm{Co})$ measured for the expanded sample of SNe Ia with photometry at extremely late times has a much larger range than that of explosion models, perhaps limiting conclusions about SN Ia progenitors drawn from extremely late-time photometry.
Publisher URL: http://arxiv.org/abs/1802.02252
DOI: arXiv:1802.02252v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.