Rheology of dense granular suspensions under extensional flow.
We study granular suspensions under a variety of extensional deformations and simple shear using numerical simulations. The viscosity and Trouton's ratio (the ratio of extensional to shear viscosity) are computed as functions of solids volume fraction $\phi$ close to the limit of zero inertia. Suspensions of frictionless particles follow a Newtonian Trouton's ratio for $\phi$ all the way up to $\phi_0$, a universal jamming point that is independent of deformation type. In contrast, frictional particles lead to a deformation-type-dependent jamming fraction $\phi_m$, which is largest for shear flows. Trouton's ratio consequently starts off Newtonian but diverges as $\phi\to\phi_m$. We explain this discrepancy in suspensions of frictional particles by considering the particle arrangements at jamming. While frictionless particle suspensions have a nearly isotropic microstructure at jamming, friction permits more anisotropic contact chains that allow jamming at lower $\phi$ but introduce protocol dependence. Finally, we provide evidence that viscous number rheology can be extended from shear to extensional deformations, with a particularly successful collapse for frictionless particles. Extensional deformations are an important class of rheometric flow in suspensions, relevant to paste processing, granulation and high performance materials.
Publisher URL: http://arxiv.org/abs/1801.03805
DOI: arXiv:1801.03805v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.