A unified framework for heat and mass transport at the atomic scale.
We present a unified framework to simulate heat and mass transport in systems of particles. The proposed framework is based on kinematic mean field theory and uses a phenomenological master equation to compute effective transport rates between particles without the need to evaluate operators. We exploit this advantage and apply the model to simulate transport phenomena at the nanoscale. We demonstrate that, when calibrated to experimentally-measured transport coefficients, the model can accurately predict transient and steady state temperature and concentration profiles even in scenarios where the length of the device is comparable to the mean free path of the carriers. Through several example applications, we demonstrate the validity of our model for all classes of materials, including ones that, until now, would have been outside the domain of computational feasibility.
Publisher URL: http://arxiv.org/abs/1801.06243
DOI: arXiv:1801.06243v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.