5 years ago

Thermoelectric properties of polycrystalline palladium sulfide.

Lei Su, Hong-Jie Pang, Xun Shi, Hao Yu, Bin-Bin Jiang, Li-Dong Chen, Liu-Cheng Chen, Xiao-Jia Chen

A suite measurements of the electrical, thermal, and vibrational properties are conducted on palladium sulfide (PdS) in order to investigate its thermoelectric performance. The tetragonal structure with the space group $P$42/$m$ for PdS is determined from X-ray diffraction measurement. The unique temperature dependence of mobility suggests that acoustic phonons and ion impurity scattering are two dominant scattering mechanisms within the compound. The obtained power factor of $27$ $\mu$Wcm$^{-1}$K$^{-2}$ at 800 K is the largest value in the remaining transition-metal sulfides studied so far. The maximum value of the dimensionless figure of merit is 0.33 at 800 K. The observed phonon softening with temperature indicates that the reduction of the lattice thermal conductivity is mainly controlled by the enhanced lattice anharmonicity. These results indicate that the binary bulk PdS has promising potential to have good thermoelectrical performance.

Publisher URL: http://arxiv.org/abs/1802.02761

DOI: arXiv:1802.02761v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.