5 years ago

Disordered Potential Landscapes for Anomalous Delocalization and Superdiffusion of Light

Disordered Potential Landscapes for Anomalous Delocalization and Superdiffusion of Light
Namkyoo Park, Xianji Piao, Sunkyu Yu
The prominent distinction between order and disorder in optics has been understood in terms of the spatial spreading of waves. In the Anderson picture of optical disorder, light localization has been elucidated by the interference of multiple scatterings from disorders, thus implying a natural correspondence between the localization and disordered potentials. Here, we focus on the disorder of a wave itself to achieve a new class of disordered optical potentials with continuous landscapes, distinguished from conventional Anderson disorder or abnormal disorders in discrete systems. Starting from the disordered but extended ground state for the Schrödinger-like wave equation, we inversely develop the landscape of an optical potential, the disorder pattern of which is similar to Brownian random-walk motion. We then demonstrate that the modes in such a structure can extend over an anomalously large region of space, and also exhibit superdiffusive wave transport. Such behaviors are in contrast to the wavelength-scale localization commonly referred to as Anderson localization in conventional disordered potentials. Our results enable wave delocalization and signal transport in generalized disordered potentials with anomalous modal properties, without the aid of interactions between on-site and hopping energies.

Publisher URL: http://dx.doi.org/10.1021/acsphotonics.7b01532

DOI: 10.1021/acsphotonics.7b01532

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.