5 years ago

Neuropilin-1 Mediated Arterial Differentiation of Murine Pluripotent Stem Cells.

Vivian Lee, Laura Niklason, Liqiong Gui, Guohao Dai, Taylor Dorsey, Diana Kim
Pluripotent stem cell derived endothelial cells (ECs) have great potential to be used in vascular therapy or tissue engineering. It is also much desired to obtain arterial or venous ECs for specific applications. Factors that are critical for the proper arterial or venous differentiation from pluripotent stem cells are still need to be understood. Here, we aim to investigate this problem deeper by examining neuropilin-1 (Nrp1), an early arterial marker that may be critical for arterial cell fate commitment. Using murine embryonic stem cells as the model system, this study investigates the neuropilin-1 (Nrp1) expression during the differentiation of pluripotent stem cells toward a vascular progenitor population. We hypothesize that Nrp1, an early arterial marker present in a developing embryo, may be more responsive when further induced in vitro towards an arterial fate. We developed a two-step differentiation approach that yielded a large percentage of Nrp1+ vascular progenitor cells (VPCs) and investigated their potential to become arterial ECs. We have defined the culture parameters that contribute greatly to the emergence of Nrp1+ VPCs: certain soluble factors especially Wnt and BMP4, early cell-cell contact, and hypoxia. Subsequent isolation of this population demonstrated a highly proliferative and network-forming behavior. The Nrp1+ VPCs exhibited increased gene expression of several Notch pathway-related arterial markers compared to Nrp1- VPCs. Most importantly, Nrp1+ VPCs demonstrated dramatically greater response to hemodynamic stimuli by up-regulating many arterial markers while Nrp1- VPCs have very little response. Surprisingly, these differences between Nrp1+ and Nrp1- VPCs are not evident with VEGF treatment. Our data suggest that Nrp1+ VPCs may serve as the arterial progenitor by enhanced response to hemodynamic flow but not to VEGF, whereas Nrp1- VPCs lack the plasticity to become arterial ECs. The findings of this research indicate that Nrp1+ VPCs in the murine model act as an important step in the arterial differentiation process.

Publisher URL: http://doi.org/10.1089/scd.2017.0240

DOI: 10.1089/scd.2017.0240

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.