5 years ago

Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3'-MicroRNA Isoforms.

Charlotte Nejad, Mark A Behlke, Geneviève Pépin, Michael P Gantier
MicroRNA (miRNA) detection by reverse transcription (RT) quantitative real-time PCR (RT-qPCR) is the most popular method currently used to measure miRNA expression. Although the majority of miRNA families are constituted of several 3'-end length variants ("isomiRs"), little attention has been paid to their differential detection by RT-qPCR. However, recent evidence indicates that 3'-end miRNA isoforms can exhibit 3'-length specific regulatory functions, underlining the need to develop strategies to differentiate 3'-isomiRs by RT-qPCR approaches. We demonstrate here that polyadenylation-based RT-qPCR strategies targeted to 20-21 nt isoforms amplify entire miRNA families, but that primers targeted to >22 nt isoforms were specific to >21 nt isoforms. Based on this observation, we developed a simple method to increase selectivity of polyadenylation-based RT-qPCR assays toward shorter isoforms, and demonstrate its capacity to help distinguish short RNAs from longer ones, using synthetic RNAs and biological samples with altered isomiR stoichiometry. Our approach can be adapted to many polyadenylation-based RT-qPCR technologies already exiting, providing a convenient way to distinguish long and short 3'-isomiRs.

Publisher URL: http://doi.org/10.3389/fgene.2018.00011

DOI: 10.3389/fgene.2018.00011

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.