3 years ago

Polymer ultrapermeability from the inefficient packing of 2D chains

Polymer ultrapermeability from the inefficient packing of 2D chains
Johannes C. Jansen, C. Grazia Bezzu, Mariolino Carta, Coray M. Colina, M. Chiara Ferrari, Neil B. McKeown, Gabriele Clarizia, Bibiana Comesaña-Gándara, Elsa Lasseuguette, Thilanga P. Liyana-Arachchi, Kyle E. Hart, Paola Bernardo, Alessio Fuoco, Ian Rose
The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (<0.7nm) and large (0.7–1.0nm) micropores, the former enhancing selectivity and the latter permeability. Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

Publisher URL: http://dx.doi.org/10.1038/nmat4939

DOI: 10.1038/nmat4939

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.