5 years ago

Indium- and Zinc-Mediated Acyloxyallylation of Protected and Unprotected AldotetrosesRevealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal

Indium- and Zinc-Mediated Acyloxyallylation of Protected and Unprotected AldotetrosesRevealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal
Ian R. Baxendale, Christian Stanetty, Marko D. Mihovilovic, Markus Draskovits
The acyloxyallylation of unprotected aldoses was first demonstrated more than a decade ago as a potentially elegant two-carbon homologation of reducing sugars (upon ozonolysis); however, its application in real case syntheses remained scarce. Following up on such a successful showcase and to answer several pending questions about this attractive transformation, we engaged in an in depth methodological reinvestigation. The epimeric tetroses l-erythrose and d-threose in unprotected and protected form were successfully applied to the indium and also zinc-mediated acyloxyallylation, with the latter being a first for an unprotected sugar. The investigation largely benefited from the choice of these more exotic starting materials as it allowed unambiguous identification/quantification of the hexose-products which are available as authentic reference materials. The observed diastereoselectivities indicate a strong substrate control (stereochemistry at O2), and the influence of the reagent’s structure on the selectivity was investigated in great detail. A strong facial diastereodivergence between related protected and unprotected structures was demonstrated and an unexpected, pronounced principle difference in performance between indium and zinc was revealed.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b03063

DOI: 10.1021/acs.joc.7b03063

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.