5 years ago

Evolution of commensal bacteria in the intestinal tract of mice

Evolution of commensal bacteria in the intestinal tract of mice
Hundreds of different bacterial species inhabit our intestines and contribute to our health status, with significant loss of species diversity typically observed in disease conditions. Within each microbial species a great deal of diversity is hidden and such intra-specific variation is also key to the proper homeostasis between the host and its microbial inhabitants. Indeed, it is at this level that new mechanisms of antibiotic resistance emerge and pathogenic characteristics evolve. Yet, our knowledge on intra-species variation in the gut is still limited and an understanding of the evolutionary mechanisms acting on it is extremely reduced. Here we review recent work that has begun to reveal that adaptation of commensal bacteria to the mammalian intestine may be fast and highly repeatable, and that the time scales of evolutionary and ecological change can be very similar in these ecosystems.

Publisher URL: www.sciencedirect.com/science

DOI: S1369527416301527

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.