Imitation networks: Few-shot learning of neural networks from scratch.
In this paper, we propose imitation networks, a simple but effective method for training neural networks with a limited amount of training data. Our approach inherits the idea of knowledge distillation that transfers knowledge from a deep or wide reference model to a shallow or narrow target model. The proposed method employs this idea to mimic predictions of reference estimators that are much more robust against overfitting than the network we want to train. Different from almost all the previous work for knowledge distillation that requires a large amount of labeled training data, the proposed method requires only a small amount of training data. Instead, we introduce pseudo training examples that are optimized as a part of model parameters. Experimental results for several benchmark datasets demonstrate that the proposed method outperformed all the other baselines, such as naive training of the target model and standard knowledge distillation.
Publisher URL: http://arxiv.org/abs/1802.03039
DOI: arXiv:1802.03039v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.