5 years ago

Doppler Spread Estimation in MIMO Frequency-selective Fading Channels.

Octavia A. Dobre, Ebrahim Karami, Moe Z. Win, Mostafa Mohammadkarimi

One of the main challenges in high-speed mobile communications is the presence of large Doppler spreads. Thus, accurate estimation of maximum Doppler spread (MDS) plays an important role in improving the performance of the communication link. In this paper, we derive the data-aided (DA) and non-data-aided (NDA) Cramer-Rao lower bounds (CRLBs) and maximum likelihood estimators (MLEs) for the MDS in multiple-input multiple-output (MIMO) frequency-selective fading channel. Moreover, a lowcomplexity NDA-moment-based estimator (MBE) is proposed. The proposed NDA-MBE relies on the second- and fourth-order moments of the received signal, which are employed to estimate the normalized squared autocorrelation function of the fading channel. Then, the problem of MDS estimation is formulated as a non-linear regression problem, and the least-squares curvefitting optimization technique is applied to determine the estimate of the MDS. This is the first time in the literature when DAand NDA-MDS estimation is investigated for MIMO frequency-selective fading channel. Simulation results show that there is no significant performance gap between the derived NDA-MLE and NDA-CRLB even when the observation window is relatively small. Furthermore, the significant reduced-complexity in the NDA-MBE leads to low root-mean-square error (NRMSE) over a wide range of MDSs when the observation window is selected large enough.

Publisher URL: http://arxiv.org/abs/1802.03058

DOI: arXiv:1802.03058v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.