ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback.
ATPboost is a system for solving sets of large-theory problems by interleaving ATP runs with state-of-the-art machine learning of premise selection from the proofs. Unlike many previous approaches that use multi-label setting, the learning is implemented as binary classification that estimates the pairwise-relevance of (theorem, premise) pairs. ATPboost uses for this the XGBoost gradient boosting algorithm, which is fast and has state-of-the-art performance on many tasks. Learning in the binary setting however requires negative examples, which is nontrivial due to many alternative proofs. We discuss and implement several solutions in the context of the ATP/ML feedback loop, and show that ATPboost with such methods significantly outperforms the k-nearest neighbors multilabel classifier.
Publisher URL: http://arxiv.org/abs/1802.03375
DOI: arXiv:1802.03375v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.