Predicting Rich Drug-Drug Interactions via Biomedical Knowledge Graphs and Text Jointly Embedding.
Minimizing adverse reactions caused by drug-drug interactions has always been a momentous research topic in clinical pharmacology. Detecting all possible interactions through clinical studies before a drug is released to the market is a demanding task. The power of big data is opening up new approaches to discover various drug-drug interactions. However, these discoveries contain a huge amount of noise and provide knowledge bases far from complete and trustworthy ones to be utilized. Most existing studies focus on predicting binary drug-drug interactions between drug pairs but ignore other interactions. In this paper, we propose a novel framework, called PRD, to predict drug-drug interactions. The framework uses the graph embedding that can overcome data incompleteness and sparsity issues to achieve multiple DDI label prediction. First, a large-scale drug knowledge graph is generated from different sources. Then, the knowledge graph is embedded with comprehensive biomedical text into a common low dimensional space. Finally, the learned embeddings are used to efficiently compute rich DDI information through a link prediction process. To validate the effectiveness of the proposed framework, extensive experiments were conducted on real-world datasets. The results demonstrate that our model outperforms several state-of-the-art baseline methods in terms of capability and accuracy.
Publisher URL: http://arxiv.org/abs/1712.08875
DOI: arXiv:1712.08875v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.