5 years ago

Extragalactic archaeology with the C, N, and O chemical abundances.

Fiorenzo Vincenzo, Chiaki Kobayashi

We predict how the C, N, and O abundances within the interstellar medium of galaxies evolve as functions of the galaxy star formation history (SFH). We adopt a hydrodynamical cosmological simulation, focusing on three star-forming disc galaxies with different SFHs. By assuming failed supernovae, we can predict an increasing trend of the gas-phase N/O--O/H abundance diagram, which was not produced in our previous simulations without failed supernovae. At high redshifts, contrary to the predictions of classical chemical evolution models with instantaneous mixing approximation, we find almost flat trends in the N/O--O/H diagram, which are due to the contribution of intermediate-mass stars together with an inhomogeneous chemical enrichment. Finally, we also predict that the average N/O and C/O steadily increase as functions of time, while the average C/N decreases, due to the mass and metallicity dependence of the yields of asymptotic giant branch stars; such variations are more marked during more intense star formation episodes. Our predictions on the CNO abundance evolution can be used to study the SFH of disc galaxies with the James Webb Space Telescope.

Publisher URL: http://arxiv.org/abs/1802.03353

DOI: arXiv:1802.03353v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.