4 years ago

Metabolic potential and in situ activity of marine Marinimicrobia bacteria in an anoxic water column

Bo Thamdrup, Cory C. Padilla, Frank J. Stewart, Jennifer B. Glass, Anthony D. Bertagnolli
Marinimicrobia bacteria are widespread in sub-euphotic areas of the oceans and particularly abundant in oxygen minimum zones (OMZs). Information on Marinimicrobia metabolism is sparse, making the biogeochemical influence of this group challenging to predict. Here, metagenome-assembled genomes representing Marinimicrobia subgroups PN262000N21 and ARCTIC96B-7 were retrieved to near completion (97% and 94%) from OMZ metagenomes, with contamination (14.1%) observed only in ARCTIC96B-7. Genes for aerobic carbon monoxide (CO) oxidation, polysulfide metabolism, and hydrogen utilization were identified only in PN262000N21, while genes for partial denitrification occurred in both genomes. Transcripts mapping to these genomes increased from <0.3% of total mRNA from the oxic zone to a max of 22% under anoxia. ARCTIC96B-7 transcript representation decreased an order of magnitude from non-sulfidic to sulfidic depths. In contrast, PN262000N21 representation was relatively constant throughout the OMZ, although transcripts encoding sulfur-utilizing proteins, including sulfur transferases, were enriched at sulfidic depths. PN262000N21 transcripts encoding a protein with fibronectin domains similar to those in cellulosome-producing bacteria were also abundant, suggesting a potential for high molecular weight carbon cycling. These data provide omic-level descriptions of metabolic potential and activity in OMZ-associated Marinimicrobia, suggesting differentiation between sub-groups with roles in carbon and dissimilatory inorganic nitrogen and sulfur cycling. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1462-2920.13879

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.