5 years ago

On the Potential Observation of False Deviations from General Relativity in Gravitational Wave Observations from Binary Black Holes.

Yifan Wang, Juan Calderón Bustillo, Peter T. H. Pang, Tjonnie G. F. Li

Detections of gravitational waves emitted by binary black holes allow for tests of General Relativity in the strong-field regime. In particular, deviations from General Relativity can be observed by comparing incoming signals to waveform templates that include parametrized deviations from General Relativity. However, it is essential that the General Relativity sector of these templates accounts for all predictable physics. Otherwise, missing physics might be mimicked by the "beyond General Relativity" sector of the templates, leading the analysis to report apparent deviations from General Relativity. Current parametrized tests implement templates that omit physical phenomena such as orbital eccentricity and higher-order modes. In this paper, we show how the omission of higher modes can lead to false deviations from General Relativity when these effects are strong enough. We study the extent of these deviations as a function of the mass ratio and the orbital orientation. We find that significant false deviations can arise when current tests are performed on signals emitted by asymmetric binaries whose orbital angular momentum is orthogonal to the line-of-sight. We estimate that the Advanced LIGO-Virgo network operating at its design sensitivity can observe false violations with a significance above $5 \sigma$ as often as once per year. Similar results are expected for other tests of General Relativity that use modified waveform models. Hence, we stress the necessity of accurate waveform models that include physical effects such as higher-order modes to trust future tests of General Relativity.

Publisher URL: http://arxiv.org/abs/1802.03306

DOI: arXiv:1802.03306v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.