Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation.
Key properties of nine possible defect sites in hexagonal boron nitride (h-BN) are predicted using density-functional theory and are corrected by applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance signals at 22.4, 20.83, and 352.70 MHz are assigned to VN, CN, and VNO2B, respectively, while the observed photoemission at 1.95 eV is assigned to VNCB. Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions are made for the two related defects VNCB and VBCN. VNCB is proposed for realizing long-lived quantum memory in h-BN. VBCN is predicted to have a triplet ground state, implying that spin initialization by optical means is feasible and suitable optical excitations are identified, making this defect of interest for possible quantum-qubit operations.
Publisher URL: http://arxiv.org/abs/1802.03130
DOI: arXiv:1802.03130v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.