5 years ago

Convective excitation of inertial modes in binary neutron star mergers.

José A. Font, Roberto De Pietri, Frank Löffler, Michele Pasquali, Francesco Maione, Nikolaos Stergioulas, Alessandra Feo

We present the first very long-term simulations of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of ms and are detectable by the planned third-generation gravitational-wave detectors at frequencies of a few kHz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the post-merger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants.

Publisher URL: http://arxiv.org/abs/1802.03288

DOI: arXiv:1802.03288v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.