3 years ago

Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation

Brajesh K. Singh, Pankaj Trivedi, Ji-Zheng He, Hang-Wei Hu
Globally, drylands represent the largest terrestrial biome and are projected to expand by 23% by the end of this century. Drylands are characterized by extremely low levels of water and nutrients and exhibit highly heterogeneous distribution in plants and biocrusts which make microbial processes shaping the dryland functioning rather unique compared with other terrestrial ecosystems. Nitrous oxide (N2O) is a powerful greenhouse gas with ozone depletion potential. Despite of the pivotal influences of microbial communities on the production and consumption of N2O, we have limited knowledge of the biological pathways and mechanisms underpinning N2O emissions from drylands, which are estimated to account for 30% of total gaseous nitrogen emissions on Earth. In this article, we describe the key microbial players and biological pathways regulating dryland N2O emissions, and discuss how these processes will respond to emerging global changes such as climate warming, extreme weather events and nitrogen deposition. We also provide a conceptual framework to precisely manipulate the dryland microbiome to mitigate N2O emissions in situ using emerging technologies with great specificity and efficacy. These cross-disciplinary efforts will enable the development of novel and environmental-friendly microbiome-based solutions to future mitigation strategies of climate change.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1462-2920.13795

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.