5 years ago

Determinant Monte Carlo algorithms for dynamical quantities in fermionic systems.

Alice Moutenet, Michel Ferrero, Wei Wu

We introduce and compare three different Monte Carlo determinantal algorithms that allow one to compute dynamical quantities, such as the self-energy, of fermionic systems in their thermodynamic limit. We show that the most efficient approach expresses the sum of a factorial number of one-particle-irreducible diagrams as a recursive sum of determinants with exponential complexity. By comparing results for the two-dimensional Hubbard model with those obtained from state-of-the-art diagrammatic Monte Carlo, we show that we can reach higher perturbation orders and greater accuracy for the same computational effort.

Publisher URL: http://arxiv.org/abs/1712.10304

DOI: arXiv:1712.10304v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.