5 years ago

Differential responses of marine, mesohaline and oligohaline bacterial communities to the addition of terrigenous carbon

D. P. R. Herlemann, M. Manecki, T. Dittmar, K. Jürgens
In response to global warming, increasing quantities of tDOM are transported through estuaries from land to the sea. In this study, we investigated microbial responses to increased tDOM concentrations in three salinity regimes (salinity: 32, 7 and 3) characteristic of the Baltic Sea. Mesocosm experiments performed in May and November revealed low (0–6%) dissolved organic carbon (DOC) utilisation. Molecular DOM analyses using ultrahigh-resolution mass spectrometry identified the terrigenous signal in the tDOM manipulation, but the molecular changes in DOM levels over the course of the experiment were subtle. However, tDOM had significant stimulatory effects on bacterial production in the oligohaline mesocosms. The shift in the bacterial community composition was especially prominent in the tDOM-amended marine and mesohaline mesocosms, but not in the oligohaline mesocosms after 7 and 11 days of incubation. These results suggested the inherent ability of oligohaline bacterial communities to adapt to high tDOM concentrations and therefore to use tDOM. The higher rates of bacterial activity and DOC removal in mesocosms containing UV-pretreated tDOM supported the increased bioavailability of photoinduced, modified tDOM. The overall low rates of microbial tDOM utilisation highlights the importance of abiotic factors in determining the distribution and dynamics of tDOM in estuaries.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1462-2920.13784

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.