5 years ago

Sample Ripening through Nanophase Separation Impacts the Performance of Dynamic Nuclear Polarization

Geoffrey Bodenhausen, Hervé Vezin, Dennis Kurzbach, Emmanuelle Weber, Ghislaine Frébourg, Giuseppe Sicoli, Daniel Abergel
Mixtures of water and glycerol provide popular matrices for low-temperature spectroscopy of vitrified samples. However, they involve counterintuitive physicochemical properties, such as spontaneous nanoscopic phase separations (NPS) in solutions that appear macroscopically homogeneous. We demonstrate that such phenomena can substantially impact the efficiency of dynamic nuclear polarization (DNP) by factors up to 20% by causing fluctuations in local concentrations of polarization agents (radicals). Thus, a spontaneous NPS of water/glycerol mixtures that takes place on time scales on the order of 30-60 min results in a confinement of polarization agents in nanoscopic water-rich vesicles, which in return affects the DNP. Such effects were found for three common polarization agents, TEMPOL, AMUPol and Trityl.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201800493

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.