5 years ago

Self-Sorting of Heteroanions in the Assembly of Cross-Shaped Polyoxometalate Clusters

Self-Sorting of Heteroanions in the Assembly of Cross-Shaped Polyoxometalate Clusters
Josep M. Poblet, Laia Vilà-Nadal, Jia-Jia Chen, De-Liang Long, Leroy Cronin, Qi Zheng, Jennifer S. Mathieson, Zhongling Lang
Heteroanion (HA) moieties have a key role in templating of heteropolyoxometalate (HPA) architectures, but clusters templated by two different templates are rarely reported. Herein, we show how a cross-shaped HPA-based architecture can self-sort the HA templates by pairing two different guests into a divacant {XYW15O54} building block, with four of these building block units being linked together to complete the cross-shaped architecture. We exploited this observation to incorporate HA templates into well-defined positions within the clusters, leading to the isolation of a collection of mixed-HA templated cross-shaped polyanions [(XYW15O54)4(WO2)4]32–/36– (X = H–P, Y = Se, Te, As). The template positions have been unambiguously determined by single crystal X-ray diffraction, NMR spectroscopy, and high-resolution electrospray ionization mass spectrometry; these studies demonstrated that the mixed template containing HPA clusters are the preferred products which crystallize from the solution. Theoretical studies using DFT calculations suggest that the selective self-sorting originates from the coordination of the template in solution. The cross-shaped polyoxometalate clusters are redox-active, and the ability of molecules to accept electrons is slightly modulated by the HA incorporated as shown by differential pulse voltammetry experiments. These results indicate that the cross-shaped HPAs can be used to select templates from solution, and themselves have interesting geometries, which will be useful in developing functional molecular architectures based upon HPAs with well-defined structures and electronic properties.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b11982

DOI: 10.1021/jacs.7b11982

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.