Coded Sparse Matrix Multiplication.
In a large-scale and distributed matrix multiplication problem $C=A^{\intercal}B$, where $C\in\mathbb{R}^{r\times t}$, the coded computation plays an important role to effectively deal with "stragglers" (distributed computations that may get delayed due to few slow or faulty processors). However, existing coded schemes could destroy the significant sparsity that exists in large-scale machine learning problems, and could result in much higher computation overhead, i.e., $O(rt)$ decoding time. In this paper, we develop a new coded computation strategy, we call \emph{sparse code}, which achieves near \emph{optimal recovery threshold}, \emph{low computation overhead}, and \emph{linear decoding time} $O(nnz(C))$. We implement our scheme and demonstrate the advantage of the approach over both uncoded and current fastest coded strategies.
Publisher URL: http://arxiv.org/abs/1802.03430
DOI: arXiv:1802.03430v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.