QRkit: Sparse, Composable QR Decompositions for Efficient and Stable Solutions to Problems in Computer Vision.
Embedded computer vision applications increasingly require the speed and power benefits of single-precision (32 bit) floating point. However, applications which make use of Levenberg-like optimization can lose significant accuracy when reducing to single precision, sometimes unrecoverably so. This accuracy can be regained using solvers based on QR rather than Cholesky decomposition, but the absence of sparse QR solvers for common sparsity patterns found in computer vision means that many applications cannot benefit. We introduce an open-source suite of solvers for Eigen, which efficiently compute the QR decomposition for matrices with some common sparsity patterns (block diagonal, horizontal and vertical concatenation, and banded). For problems with very particular sparsity structures, these elements can be composed together in 'kit' form, hence the name QRkit. We apply our methods to several computer vision problems, showing competitive performance and suitability especially in single precision arithmetic.
Publisher URL: http://arxiv.org/abs/1802.03773
DOI: arXiv:1802.03773v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.