Deep Reinforcement Learning for Solving the Vehicle Routing Problem.
We present an end-to-end framework for solving Vehicle Routing Problem (VRP) using deep reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. Our method is faster in both training and inference than a recent method that solves the Traveling Salesman Problem (TSP), with nearly identical solution quality. On the more general VRP, our approach outperforms classical heuristics on medium-sized instances in both solution quality and computation time (after training). Our proposed framework can be applied to variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.
Publisher URL: http://arxiv.org/abs/1802.04240
DOI: arXiv:1802.04240v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.