On Axiomatizability of the Multiplicative Theory of Numbers.
The multiplicative theory of a set of numbers (which could be natural, integer, rational, real or complex numbers) is the first-order theory of the structure of that set with (solely) the multiplication operation (that set is taken to be multiplicative, i.e., closed under multiplication). In this paper we study the multiplicative theories of the complex, real and (positive) rational numbers. These theories (and also the multiplicative theories of natural and integer numbers) are known to be decidable (i.e., there exists an algorithm that decides whether a given sentence is derivable form the theory); here we present explicit axiomatizations for them and show that they are not finitely axiomatizable. For each of these sets (of complex, real and [positive] rational numbers) a language, including the multiplication operation, is introduced in a way that it allows quantifier elimination (for the theory of that set).
Publisher URL: http://arxiv.org/abs/1707.04732
DOI: arXiv:1707.04732v4
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.