5 years ago

Efficient Robust Matrix Factorization with Nonconvex Loss.

Quanming Yao, James T. Kwok

Robust matrix factorization (RMF), which uses the $\ell_1$-loss, often outperforms standard matrix factorization using the $\ell_2$-loss, particularly when outliers are present. The state-of-the-art RMF solver is the RMF-MM algorithm, which, however, cannot utilize data sparsity. Moreover, sometimes even the (convex) $\ell_1$-loss is not robust enough. In this paper, we propose the use of nonconvex loss to enhance robustness. To address the resultant difficult optimization problem, we use majorization-minimization (MM) optimization and propose a new MM surrogate. To improve scalability, we exploit data sparsity and optimize the surrogate via its dual with the accelerated proximal gradient algorithm. The resultant algorithm has low time and space complexities and is guaranteed to converge to a critical point. Extensive experiments demonstrate its superiority over the state-of-the-art in terms of both accuracy and scalability.

Publisher URL: http://arxiv.org/abs/1710.07205

DOI: arXiv:1710.07205v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.