5 years ago

Impact of Ti Incorporation on Hydroxylation and Wetting of Fe3O4

Impact of Ti Incorporation on Hydroxylation and Wetting of Fe3O4
Kevin M. Rosso, Andrey Shavorskiy, Timothy C. Droubay, Carolyn I. Pearce, Kelsey A. Stoerzinger, Vaithiyalingam Shutthanandan, Hendrik Bluhm
Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3–x)TixO4 (001)-oriented epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x = 0.25) as a bulk dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3–x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06258

DOI: 10.1021/acs.jpcc.7b06258

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.