Entangled Scent of a Charge.
We argue that the ground state of a field theory, in the presence of charged particles, becomes an entangled state involving an infinity of soft photons. The quantum field vacuum is altered by the passage of a uniformly moving charge, leaving in its wake a different dressed ground state. In this sense a charged particle leaves its electromagnetic scent even after passing by. Unlike in classical electrodynamics the effect of the charge remains even at infinite time. The calculation is done in detail for the ground state of a spacetime wedge, although the results are more general. This agrees in spirit with recent results over the infrared aspects of field theory, although the technical details are different. These considerations open the possibility that the information carried by quantum fields, being nonlocal, does not disappear beyond the horizon of black holes.
Publisher URL: http://arxiv.org/abs/1802.03922
DOI: arXiv:1802.03922v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.