5 years ago

Impact of Hydrogen Bonding on the Dynamics and Structure of Protic Ionic Liquid/Water Binary Mixtures

Impact of Hydrogen Bonding on the Dynamics and Structure of Protic Ionic Liquid/Water Binary Mixtures
Yong-Lei Wang, Michael D. Fayer, Heather E. Bailey
The orientational dynamics and microscopic liquid structure of a protic ionic liquid, 1-ethylimidazolium bis(trifluoromethylsulfonyl)imide (EhimNTf2), and its aprotic analogue, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2), were studied at various water concentrations using optical heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy, linear infrared spectroscopy, and atomistic simulations. The OHD-OKE experiments essentially measure the orientational relaxation of the Ehim+ and Emim+ cations. The experiments and simulations show a significant dynamical and structural change in EhimNTf2 between the 2:1 ion pair:water and the 1:1 ion pair:water concentrations. The OHD-OKE data show that EmimNTf2/water mixtures exhibit hydrodynamic behavior at all water concentrations up to saturation. In contrast, EhimNTf2/water mixtures deviate from hydrodynamic behavior at water concentrations above 2:1. At the 1:1 concentration, the orientational randomization of the Ehim+ cation is slower than that predicted using viscosity data. Atomistic simulation results reveal the microscopic ionic structures of dry liquids and the preferential hydrogen bonding of water to the H atom of the N–H of Ehim+ over other sites on the Ehim+ and Emim+ cations. Atomistic simulation results demonstrate that in EhimNTf2 RTIL/water mixtures there is a substantial jump in the formation of water–water hydrogen bonds in addition to N–H-water hydrogen bonds upon increasing the water concentration from 2:1 to 1:1. Water–water hydrogen bonding strengthens the spatial coordination of the H atom of the N–H moiety of Ehim+ to neighboring water molecules through preferential hydrogen bonding. The jump in the concentration of water–water hydrogen bonds occurs at the Ehim+/water concentration at which the orientational relaxation deviates from hydrodynamic behavior. This structural observation is confirmed with FT-IR spectra that show asymmetry in the peak for the O–D stretch that is indicative of water clusters. The formation of water clusters and the strengthening of the N–H···OH2 hydrogen bonds slow the orientational relaxation of Ehim+ cations as observed by the OHD-OKE experiments.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b06376

DOI: 10.1021/acs.jpcb.7b06376

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.