5 years ago

Fundamental noise dynamics in cascaded-order Brillouin lasers.

Nils T. Otterstrom, Peter T. Rakich, Ryan Behunin, Daniel J. Blumenthal, Sarat Gundavarapu

The dynamics of cascaded-order Brillouin lasers make them ideal for applications such as rotation sensing, highly coherent optical communications, and low-noise microwave signal synthesis. Remark- ably, when implemented at the chip-scale, recent experimental studies have revealed that Brillouin lasers can operate in the fundamental linewidth regime where optomechanical and quantum noise sources dominate. To explore new opportunities for enhanced performance, we formulate a simple model to describe the physics of cascaded Brillouin lasers based on the coupled mode dynamics governed by electrostriction and the fluctuation-dissipation theorem. From this model, we obtain analytical formulas describing the steady state power evolution and accompanying noise properties, including expressions for phase noise, relative intensity noise and power spectra for beat notes of cascaded laser orders. Our analysis reveals that cascading modifies the dynamics of intermediate laser orders, yielding noise properties that differ from single-mode Brillouin lasers. These modifications lead to a Stokes order linewidth dependency on the coupled order dynamics and a broader linewidth than that predicted with previous single order theories. We also derive a simple analytical expression for the higher order beat notes that enables calculation of the Stokes linewidth based on only the relative measured powers between orders instead of absolute parameters, yielding a method to measure cascaded order linewidth as well as a prediction for sub-Hz operation. We validate our results using stochastic numerical simulations of the cascaded laser dynamics.

Publisher URL: http://arxiv.org/abs/1802.03894

DOI: arXiv:1802.03894v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.