Invariant measures for the stochastic one-dimensional compressible Navier-Stokes equations.
We investigate the long-time behavior of solutions to a stochastically forced one-dimensional Navier-Stokes system, describing the motion of a compressible viscous fluid, in the case of linear pressure law. We prove existence of an invariant measure for the Markov process generated by strong solutions. We overcome the difficulties of working with non-Feller Markov semigroups on non-complete metric spaces by generalizing the classical Krylov-Bogoliubov method, and by providing suitable polynomial and exponential moment bounds on the solution, together with pathwise estimates.
Publisher URL: http://arxiv.org/abs/1802.04000
DOI: arXiv:1802.04000v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.