5 years ago

Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding.

Wolfgang Freude, Muhammad Rodlin Billah, Martin Moehrle, Christian Koos, Aleksandar Nesic, Tobias Hoose, Andreas Hofmann, Matthias Blaicher, Sebastian Randel, Ute Troppenz, Philipp-Immanuel Dietrich, Nicole Lindenmann, Pablo Marin-Palomo

Efficient coupling of III-V light sources to silicon photonic circuits is one of the key challenges of integrated optics. Important requirements are low coupling losses, as well as small footprint and high yield of the overall assembly, along with the ability to use automated processes for large-scale production. In this paper, we demonstrate that photonic wire bonding addresses these challenges by exploiting direct-write two-photon lithography for in-situ fabrication of three-dimensional freeform waveguides between optical chips. In a series proof-of-concept experiments, we connect InP-based horizontal-cavity surface emitting lasers (HCSEL) to passive silicon photonic circuits with insertion losses down to 0.4 dB. To the best of our knowledge, this is the most efficient interface between an InP light source and a silicon photonic chip that has so far been demonstrated. Our experiments represent a key step in advancing photonic wire bonding to a universal integration platform for hybrid photonic multi-chip assemblies that combine known-good dies of different materials to high-performance hybrid multi-chip modules.

Publisher URL: http://arxiv.org/abs/1802.03454

DOI: arXiv:1802.03454v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.