5 years ago

Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters.

A. C. Edge, J. Hlavacek-Larrondo, V. Biffi, D. Eckert, N. Werner, F. Brighenti, H. Yu, G. R. Tremblay, J. M. Stone, P. Temi, S. L. Hamer, M. Gendron-Marsolais, M. T. Hogan, M. McDonald, M. Gaspari, S. Planelles, S. Ettori, M. Sun, P. Tozzi

We propose a novel method to constrain turbulence and bulk motions in massive galaxies, groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (10^7 K) are perturbed by subsonic turbulence, warm (10^4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked via the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new IFU measurements in Perseus cluster. The ensemble multiphase gas distributions are characterized by substantial spectral line broadening (100-200 km/s) with mild line shift. On the other hand, pencil-beam detections sample the small-scale clouds displaying smaller broadening and significant line shift up to several 100 km/s, with increased scatter due to the turbulence intermittency. We present new ensemble sigma_v of the warm Halpha+[NII] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). We show the physically motivated criterion C = t_cool/t_eddy ~ 1 best traces the condensation extent region and presence of multiphase gas in observed clusters/groups. The ensemble method can be applied to many available datasets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.

Publisher URL: http://arxiv.org/abs/1709.06564

DOI: arXiv:1709.06564v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.