Kinematics of a Fluid Ellipse in a Linear Flow.
A four-parameter kinematic model for the position of a fluid parcel in a time-varying ellipse is introduced. For any ellipse advected by an arbitrary linear two-dimensional flow, the rates of change of the ellipse parameters are uniquely determined by the four parameters of the velocity gradient matrix, and vice versa. This result, termed ellipse/flow equivalence, provides a stronger version of the well-known result that a linear velocity field maps an ellipse into another ellipse. Moreover, ellipse/flow equivalence is shown to be a manifestation of Stokes' theorem. This is done by deriving a matrix-valued extension of the classical Stokes' theorem that involves a spatial integral over the velocity gradient tensor, thus accounting for the two strain terms in addition to the divergence and vorticity. General expressions for various physical properties of an elliptical ring of fluid are also derived. The ellipse kinetic energy is found to be composed of three portions, associated respectively with the circulation, the rate of change of the moment of inertia, and the variance of parcel angular velocity around the ellipse. A particular innovation is the use of four matrices, termed the IJKL basis, that greatly facilitate the required calculations.
Publisher URL: http://arxiv.org/abs/1802.02079
DOI: arXiv:1802.02079v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.